太阳成集团tyc411(中国)有限公司-百度百科

太阳成集团tyc411

非定常Ginzburg-Landau方程的保结构有限元算法

来源:太阳成集团tyc411 发布时间:2023-09-20   212


报告题目:非定常Ginzburg-Landau方程的保结构有限元算法

报告摘要:对于时间规范下的非定常Ginzburg-Laudau 方程,我们提出了一类物理边界条件下的非线性有限元算法,避免了因额外边界条件导致的非物理数值现象。对该非线性格式我们设计了数值有效的预条件子,并分析了其有效性,将该非线性格式的计算量降至线性解耦格式计算量同一量级的同时保证了数值能量的稳定性。我们还提出了一类保持无条件能量耗散和离散极值原理的解耦有限元格式并分析了其最优收敛性。相比传统有限元格式,该格式在100倍的时间步长下依旧能有效模拟超导材料在强外加磁场下的长时间电磁特性,大幅提高了数值模拟的速度和可靠性。

报告人:马利敏(武汉大学数学与统计学院

时间:202352615:30  17:30

地点:海纳苑2幢204


报告人简介:马利敏博士分别于 2013 年和 2018 年获得武汉大学学士学位和北京大学博士学位,于 2018 年至 2022 年期间依次在美国宾州州立大学许进超教授课题组和香港理工大学乔中华教授课题组进行博士后研究,2022 年 10 月加入武汉大学数学与统计学院,信息与计算科学系任特聘副研究员。其主要研究方向为偏微分方程数值解,具体包括:椭圆算子特征值问题的高精度有限元方法、非定常 Ginzburg-Landau 方程保持物理性质的有限元算法和快速求解器、弹性问题间断 Galerkin 方法研究、非协调有限元超收敛分析等。马利敏博士关于特征值问题的一个工作曾获得 2020 年北京计算数学优秀青年论文奖,其主要研究成果发表于 Math. Comp., Numer.Math., SIAM J. Sci. Comput., J. Comput. Phys. 等计算数学核心期刊。


Copyright © 2023 太阳成集团tyc411(中国)有限公司-百度百科    版权所有

    浙ICP备05074421号

技术支持: 创高软件     管理登录

    您是第 1000 位访问者