(5月2日)视觉神经系统的建模与计算 ---- 神经网络动力学的粗粒化
来源:太阳成集团tyc411
发布时间:2017-04-28
755
报告人:张继伟博士,北京计算科学研究中心
时间:5月2日下午2:00
地点:工商楼200-9
摘要:
In this talk we provide a general methodology for systematically
reducing the dynamics of homogeneously-structured integrate-and-fire
networks down to an augmented 4-dimensional system of
ordinary-differential-equations. Our reduction succeeds where most current
firing-rate and population-dynamics models fail because we capture the
emergence of `multiple-firing-events' involving the semi-synchronous firing
of many neurons. These multiple-firing-events are largely responsible for
the fluctuations generated by the network and, as a result, our reduction
faithfully describes many dynamic regimes ranging from homogeneous to
synchronous. Our reduction is based on first principles, and provides an
analyzable link between the integrate-and-fire network parameters and the
`dynamic-skeleton' underlying the 4-dimensional augmented ODE
报告人简介:
张继伟博士于2009年在香港浸会大学获得博士学位。
张博士先后到南洋理工大学和纽约大学克朗所从事博士后研究,在2014年5月到北京计算科学研究中心工作,
张博士主要研究无界域偏微分方程数值解法以及神经科学的建模与计算方面的工作。主要成果发表在SIAM J. Sci.
Comput., SIAM J. Num. Anal.,Math. Comput., J. Comput. Neurosci.等业内知名期刊上。
时间:5月2日下午2:00
地点:工商楼200-9
摘要:
In this talk we provide a general methodology for systematically
reducing the dynamics of homogeneously-structured integrate-and-fire
networks down to an augmented 4-dimensional system of
ordinary-differential-equations. Our reduction succeeds where most current
firing-rate and population-dynamics models fail because we capture the
emergence of `multiple-firing-events' involving the semi-synchronous firing
of many neurons. These multiple-firing-events are largely responsible for
the fluctuations generated by the network and, as a result, our reduction
faithfully describes many dynamic regimes ranging from homogeneous to
synchronous. Our reduction is based on first principles, and provides an
analyzable link between the integrate-and-fire network parameters and the
`dynamic-skeleton' underlying the 4-dimensional augmented ODE
报告人简介:
张继伟博士于2009年在香港浸会大学获得博士学位。
张博士先后到南洋理工大学和纽约大学克朗所从事博士后研究,在2014年5月到北京计算科学研究中心工作,
张博士主要研究无界域偏微分方程数值解法以及神经科学的建模与计算方面的工作。主要成果发表在SIAM J. Sci.
Comput., SIAM J. Num. Anal.,Math. Comput., J. Comput. Neurosci.等业内知名期刊上。