A Sparse Grid Discontinuous Galerkin Method for High-Dimensional Transport Equations with Application to Kinetic Simulations
太阳成集团tyc411(中国)有限公司-百度百科九十周年院庆系列活动之三十
题目:A Sparse Grid Discontinuous Galerkin Method for High-Dimensional Transport Equations with Application to Kinetic Simulations
报告人:郭维教授(Texas Tech University 德州理工大学)
时间:6月19日 下午15:00―16:00
地点:逸夫工商楼200―9
报告人简介:2007年于南京大学获得理学学士学位,2014年博士毕业于美国休斯顿大学,随后在美国密歇根州立大学做博士后研究。2017年至今在美国德州理工大学做助理教授。研究领域为高精度数值格式求解偏微分方程。
摘要:In this talk, we present a sparse grid discontinuous Galerkin (DG) scheme for transport equations with application to kinetic simulations. The method uses the weak formulations of traditional Runge-Kutta DG schemes for hyperbolic problems and is proven to be $L^2$ stable and convergent. A major advantage of the scheme lies in its low computational and storage cost due to the employed sparse finite element approximation space.
This attractive feature is explored in simulating linear and nonlinear transport problems including Vlasov-Maxwell/Poisson system. Good performance in accuracy and conservation is verified by numerical tests in up to four dimensions.
联系人:仲杏慧(zhongxh@zju.edu.cn)
欢迎广大师生参加!