太阳成集团tyc411(中国)有限公司-百度百科

太阳成集团tyc411

概率统计学术报告

来源:太阳成集团tyc411 发布时间:2018-11-13   611


题目:Extreme Quantile Estimation for Autoregressive Models

时间:11月16日(周五)下午15:00

地点:工商楼105报告厅

报告人:黎德元教授


摘要:Quantile autoregresive model is a useful extension to classical autoregresive models as it can capture the influences of conditioning variables on the location, scale and shape of the response distribution. However, at the extreme tails, standard quantile autoregression estimator is often unstable due to data sparsity. In this paper, assuming quantile autoregresive models, we develop a new estimator for extreme conditional quantiles of time series data based on extreme value theory. We build the connection between the second-order conditions for the autoregression coefficients and for the conditional quantile functions, and establish the asymptotic properties of the proposed estimator. The finite sample performance of the proposed method is illustrated through a simulation study and the analysis of US retail gasoline price.

 

欢迎大家参加!

联系人:张荣茂(rmzhang@zju.edu.cn)


Copyright © 2023 太阳成集团tyc411(中国)有限公司-百度百科    版权所有

    浙ICP备05074421号

技术支持: 创高软件     管理登录

    您是第 1000 位访问者