太阳成集团tyc411(中国)有限公司-百度百科

太阳成集团tyc411

On the fill-in and cobordism of non-negative scalar curvature metrics

来源:太阳成集团tyc411 发布时间:2020-11-17   420

报告人:薄乐阳(北京大学)
时间: 11月19日16:00——17:00
地点: 欧阳楼316室

摘要:In this talk,we'll consider the  non-negative scalar curvature (NNSC) fill-in and cobordism problem and mainly give some non existence results.  Roughly speaking, for the Bartnik data $(\Sigma^{n-1}, \gamma, H)$, suppose $\Sigma^{n-1}$ is the topological sphere $S^{n-1}$, $\gamma$ is a positive scalar cuvature metric and $3\le n\le 7$, then $(\Sigma^{n-1}, \gamma, H)$ admit no NNSC fill-in provided the mean curvature $H$ is sufficiently large.  Similaly, for Bartnik data $(\Sigma_i^{n-1}, \gamma_i, H_i)$, $i=1,2$, suppose each $\Sigma_i^{n-1}$ is the topological sphere $S^{n-1}$,  each $\gamma_i$ is a positive scalar cuvature metric, $3\le n\le 7$ and $H_1$ is fixed, then they adimit no  NNSC cobordism provided the mean curvature $H_2$ is sufficiently large.


联系人:王枫wfmath@zju.edu.cn



Copyright © 2023 太阳成集团tyc411(中国)有限公司-百度百科    版权所有

    浙ICP备05074421号

技术支持: 创高软件     管理登录

    您是第 1000 位访问者