太阳成集团tyc411(中国)有限公司-百度百科

太阳成集团tyc411

Testing for unit roots based on sample autocovariances

来源:太阳成集团tyc411 发布时间:2020-12-02   347

报告时间:2020年12月11日,北京时间:16:00

报告地点:会议 ID:477 254 735

报告人:常晋源

摘要:We propose a new unit-root test for a stationary null hypothesis H0 against a unit-root alternative H1. Our approach is nonparametric as H0 only assumes that the process concerned is I(0) without specifying any parametric forms. The new test is based on the fact that the sample autocovariance function (ACF) converges to the finite population ACF for an I(0) process while it diverges to infinity for a process with unit-roots. Therefore the new test rejects H0 for the large values of the sample ACF. To address the technical challenge ‘how large is large’, we split the sample and establish an appropriate normal approximation for the null-distribution of the test statistic. The substantial discriminative power of the new test statistic is rooted from the fact that it takes finite value under H0 and diverges to infinity under H1. This allows us to truncate the critical values of the test to make it with the asymptotic power one. It also alleviates the loss of power due to the sample-splitting. The finite sample properties of the

test are illustrated by simulation which shows its stable and more powerful performance in comparison with the KPSS test (Kwiatkowski et al., 1992). The test is implemented in a user-friendly R-function.

报告人简介:常晋源,西南财经大学数据科学与商业智能联合实验室执行主任、教授、博士生导师、四川省特聘专家、四川省统计专家咨询委员会,是教育部青年长江学者。主要从事“超高维数据分析”和“高频金融数据分析”两个领域的研究。先后以第一作者在《Annals of Statistics》《Biometrika》《Biometrics》和《Journal of Econometrics》等统计学与计量经济学国际顶级学术期刊发表论文十余篇。现目前正担任统计学国际顶级学术期刊Journal of the Royal Statistical Society Series B、统计学国际知名学术期刊Statistica Sinica以及计量经济学国际著名学术期刊Journal of Business & Economic Statistics的Associate Editor。


Copyright © 2023 太阳成集团tyc411(中国)有限公司-百度百科    版权所有

    浙ICP备05074421号

技术支持: 创高软件     管理登录

    您是第 1000 位访问者