太阳成集团tyc411(中国)有限公司-百度百科

太阳成集团tyc411

Endomorphism algebras of projective-injective modules

来源:太阳成集团tyc411 发布时间:2023-09-21   293

学术报告


题目:Endomorphism algebras of projective-injective modules

报告人:胡峻 教授(北京理工大学)

时间:2023316日星期四下午4:00

地点:浙大紫金港校区海纳苑2101

摘要:To determine if the endomorphism ring of a projective-injective module is symmetric is of wide interest in representation theory, ring theory and algebraic Lie theory. In this talk we show that for any projective-injective module over a large class of algebras which includes all quasi-hereditary truncations and quotients of (quantised, cyclotomic) Schur algebras and certain quotients of Hecke algebras of type $A$ that the endomorphism algebra is symmetric. We present an explicit example showing that endomorphism algebras of projective-injective modules in the BGG category $\mathcal{O}_q$ for the quantum group $U_q$ need not be symmetric, thereby disproving a conjecture by Andersen and Mazorchuk. This talk is based on a joint work with Fang Ming.



联系人: 李方 教授 fangli@zju.edu.cn


Copyright © 2023 太阳成集团tyc411(中国)有限公司-百度百科    版权所有

    浙ICP备05074421号

技术支持: 创高软件     管理登录

    您是第 1000 位访问者