太阳成集团tyc411(中国)有限公司-百度百科

太阳成集团tyc411

Mapping class groups in symplectic geometry: from packing problem to moduli spaces

来源:太阳成集团tyc411 发布时间:2023-09-20   114

代数几何与辛几何系列学术报告


Title: Mapping class groups in symplectic geometry: from packing problem to moduli spaces

报告人:吴惟为 (浙江大学数学学院 长聘副教授)

时间:202346日星期四下午2:45-3:45

地点:浙大紫金港校区海纳苑2210

Abstract:

Symplectic packing problem  is one of the central theme in symplectic geometry, after Gromov’s celebrating non-squeezing theorem.  Many works have been done to study whether a symplectic region can be packed into a given symplectic manifold.  

    We take a different perspective and relate the topology of the space of symplectic packing to the mapping class group of the blown-up manifold.  It turns out to be related to a class of symplectic automorphism called the “ball-swapping”.  Furthermore, we relate the story to the monodromy problem in algebraic geometry, and another more classical symplectic automorphism called “Dehn twists”.  This leads to applications to uniqueness theorems of Lagrangian embeddings, classifications of homotopy types of symplectic automorphism groups and classification of finite group actions


Copyright © 2023 太阳成集团tyc411(中国)有限公司-百度百科    版权所有

    浙ICP备05074421号

技术支持: 创高软件     管理登录

    您是第 1000 位访问者