太阳成集团tyc411(中国)有限公司-百度百科

太阳成集团tyc411

Simultaneous Diophantine approximation of the dynamical systems x2 and x3

来源:太阳成集团tyc411 发布时间:2023-09-20   158

报告题目:Simultaneous Diophantine approximation of the dynamical systems x2 and x3

报告人:廖灵敏教授武汉大学)

时间:2023年04月20日(星期15:10-16:00

地点:紫金港校区海纳苑2幢312教室

摘要:We are interested in the simultaneous Diophantine approximation problem of the dynamical systems x2 module one and x3 modulo one on the unit interval. Precisely, we study the size of the sets of points whose orbits under the dynamical systems x2 and x3 simultaneously approach to a given point with a given speed. A zero-one law for the Lebesgue measure of such sets is proved. The Hausdorff dimension formula is also obtained for the approximation of exponential speed. We underline that one part of the dimensional formula is established under the famous abc conjecture. This is a joint work with Bing Li, Sanju Velani and Evgeniy Zorin.

联系人叶和溪教授(yehexi@zju.edu.cn


Copyright © 2023 太阳成集团tyc411(中国)有限公司-百度百科    版权所有

    浙ICP备05074421号

技术支持: 创高软件     管理登录

    您是第 1000 位访问者