Parameter space of cubic polynomials with a parabolic fixed point
Title: Parameter space of cubic polynomials with a parabolic fixed point
Abstract: We study the topological structure of the parameter space for the cubic polynomial family \lambda z+az^2+z^3 when \lambda is a root of unity. We show that for any given \lambda, the connected locus in the a-plane contains a full continuum which is almost a double covering of the filled-in Julia set for the quadratic polynomial \lambda z+z^2. This naturally generalises the corresponding result in the attracting case by Petersen-Roesch-Tan
报告人:张润泽(法国Toulouse大学博士)
报告时间:6月22日下午4点
报告地点:海纳苑2幢203