太阳成集团tyc411(中国)有限公司-百度百科

太阳成集团tyc411

A Universal Law in Deep Learning: from MLP to Transformer

来源:太阳成集团tyc411 发布时间:2024-07-06   10

报告人:苏炜杰(宾夕法尼亚大学沃顿商学院)

报告时间:20247916:00-17:00

报告地点:海纳苑2106

 

摘要: In this talk, we introduce a universal phenomenon that governs the inner workings of a wide range of neural network architectures, including multilayer perceptrons, convolutional neural networks, transformers, and Mamba. Through extensive computational experiments, we demonstrate that deep neural networks tend to process data in a uniform improvement manner across layers. We conclude this talk by discussing how this universal law provides useful insights into practice.

 

联系人:赖俊(laijun6@zju.edu.cn

Copyright © 2023 太阳成集团tyc411(中国)有限公司-百度百科    版权所有

    浙ICP备05074421号

技术支持: 创高软件     管理登录

    您是第 1000 位访问者